0:00
so what do we need to know about
0:01
triangles we need to know about
0:03
triangles so you don't meet them like
0:05
there's a lot of things with triangles
0:07
right we're going to talk about the
0:08
pagan when you go to algebra one you
0:11
know you're going to talk about it we're
0:12
going to talk about sign cosine how to
0:14
find the measure of an angle and all of
0:16
that stuff geometry is actually really
0:19
practical so I I think it's probably one
0:21
of the things that you may want to like
0:23
look into a lot cuz this is I like I
0:26
like geometry some of it not all of it i
0:28
don't like I don't really like poop yeah
0:35
you didn't flinch that much all right so
0:38
we're going to talk about triangle right
0:40
now a triangle is pretty much formed by
0:42
doing what by colliding three line
0:46
segment right here how many segments do
0:49
I have here three three segment i have
0:52
this segment i have this segment and I
0:54
have this segment so if you put them
0:56
together you got what you call a
0:58
triangle why what does this the word T r
1:02
I stand for tri is what three three
1:05
right triangle that means what does that
1:07
mean three what three angles so we have
1:10
three angles here we have X we have Y
1:12
and we have Z and all these are angles
1:15
right now the beautiful things about
1:17
triangle is this the sum of the three
1:20
angles in a triangle is equal to what
1:23
180 180° any triangle that you're going
1:25
to meet any given triangle if you add
1:29
all three angles in the triangles you're
1:31
always going to get what 180 no matter
1:34
what right so matter what the triangle
1:36
looks like the sum of the three
1:38
triangles the three angles are always
1:40
going to be 180 is it just 180 if it's
1:42
an isoses triangle it doesn't matter
1:47
um right triangle the sum of the three
1:50
angles of the triangles are always going
1:54
so square would be 360 excuse me would
1:57
it be 360 with a square no square no not
2:00
necessarily if a square will be 360 yes
2:03
why because it's 90 909 90 right a
2:06
square is always going to be 360 a
2:08
rectangle is also going to be what 360
2:11
because each form what a 90° angle
2:13
because you have two parallel lines two
2:15
parallel lines so that's Yeah that is
2:16
true actually so the sum of the three
2:18
angles in the triangle is always going
2:20
to be 180 right now why do we use this
2:24
example if I give you this triangle here
2:27
right i have the measure of this angle i
2:30
have the measure of this angle now I
2:31
want to find this angle what do I do how
2:35
how can I use that right there to
2:40
find subtract the sum of the two from
2:43
180 right because we know that by
2:48
89 right + 54 is going to be equal to
2:55
180 right so therefore to find x we just
2:58
need to take away take away these two
3:00
angles from it right so x is going to be
3:09
89 - 54 and that should give you the
3:12
measure of the third angle X that we're
3:15
looking for right now I'll let you do
3:17
that you know I have to do yours in
3:19
subtraction what you get 27 27 so X is
3:23
27° right and if you add all three
3:25
together if you do 27 + 54 + 39 you
3:34
okay i'm trusting you guys i'm trusting
3:37
your algebra right we know how to do
3:39
this right so if you do 37 + 54 + 89 you
3:42
should get what 180 if you don't get
3:45
that you get something less or more than
3:47
180 you know that you did something
3:48
wrong okay so this is how you find the
3:51
measure of the third angle if you're
3:53
given uh two angles now let's try this
3:56
problem here i want to see if you guys
3:58
can figure it out right now this is the
4:00
word problem now he's telling us that
4:02
the measures of the angles of the
4:05
triangle ABC are in the ratio 138 what
4:09
are the measures of the
4:11
angles we have an we have a triangle ABC
4:14
and all we know is that there's a ratio
4:18
in between them right we have a
4:21
ratio 1 to 3 to 8 what are the measures
4:24
of the angle how how do you think you
4:26
going to solve this yeah would you put
4:28
like one on A three on B and eight on C
4:33
okay you could do that to start with
4:34
right you could put you can say this is
4:35
the ratio one three and eight then what
4:37
does that mean though
4:38
that means nothing really right now all
4:40
we know is that's a ratio right so how
4:43
do we use this ratio again here so
4:44
you're going to have to like multiply
4:47
them in certain ways to have like one
4:50
and it's going to be one power no it
4:54
would be one three times okay good
4:56
you're getting there all right so now
5:00
when we have something that we don't
5:01
know what letter do we use usually if
5:03
you don't know something X right so
5:06
let's say measure of A was X what do you
5:10
think measure of B is going to be one
5:13
now what's the ratio if one of them is
5:16
one the ratio is what
5:19
3 what 3 X and this is going to be X 8 X
5:25
now can we find now the measure of these
5:27
angles yes because we know that the
5:30
measure of this plus this plus this is
5:35
180 180 so it's going to be 1 x right +
5:40
3x + 8 x is 180 now we can solve for x
5:45
and once we find x we can find the
5:46
measures of any angle right so it's
5:50
12x right if you add all these together
5:54
180 and then to find x you divide by
5:57
what 12 so what what's 180 over 12
6:02
i can't divide i lost my calculator
6:05
this is bad we can't do some division
6:09
the problem was 1 12 is equal to what
6:14
somebody else nine is it nine or
6:16
something i can't believe I'm going to
6:19
do myself yes do it yourself
6:22
10us 10 is 120 okay wait is it is it
6:29
180id 12 okay so we are sitting here
6:32
thinking about 15 no it's not that 15
6:36
what's 14 15 she has a calculator 15 all
6:41
right 15 even if there was no calculator
6:44
all right so x is 15 or 15 so
6:49
x was right right so x is 15 right so
6:53
that means b is going to be what 45 45
6:56
because we do 3 * 15 right
6:59
that's 45 and then this is going to be 8
7:05
120 right yeah totally so this is 120
7:08
all right and if you add them all
7:10
together you're going to get
7:12
what 180 right so this is how you do
7:16
these problems you're given a ratio you
7:19
can use that ratio to find all angles
7:23
because the ratio means there's a
7:24
relationship between the three one of
7:26
them is one if one of them is x the
7:27
other one is 3x and the other one is 8x
7:29
you can solve it right now we're going
7:32
to talk about classifying triangles
7:35
right classifying triangles okay so
7:38
before we do that though we're going to
7:39
talk about um um certain types of angles
7:49
so we have four different type right
7:53
we have four different type
8:10
this is going to be called Lee just
8:15
acute angle right acute angle why do we
8:19
call it an acute angle because it's less
8:21
than 90° it's less than 90° is less than
8:23
90° right less than 90° the measure of
8:27
the angle is less than 90° now this is
8:29
what I mean right angle that is 90
8:32
because it's exactly what 90° right
8:38
and then this is a triangle of this
8:41
triangle up because of what it's big
8:44
it's more than what it's bigger than 90°
8:46
more than 90° up more than 90 right it's
8:49
90° and then this is basically the a
8:52
line a straight angle right or a flat
8:55
because the whole thing is what 360 No
9:00
180 right so this is a flat or straight
9:02
angle straight angle straight angle
9:14
uh this is pretty much and then if you
9:17
Oh no we we have like if you look in
9:19
your book we don't have to like I don't
9:20
have to put it on put this on the board
9:22
okay if you look at triangles and if you
9:25
find that all the measure all the
9:27
measures of the angles in the triangles
9:29
are less than is less than like 90 is
9:32
going to be a acute triangle right and
9:34
if you have uh an angle in a triangle
9:37
where one of the angles is more than 90
9:40
is going to be the obus and then the
9:41
last one is going to be a right angle
9:43
right triangle because we know that you
9:45
have the hypotenuse we have two legs
9:47
they form a 90° so that's a right angle
9:50
okay and you also have some minor ones
9:52
you have a scaline triangle because no
9:54
congruent sides and you have the
9:56
isoclesles triangle because two sides
10:01
triangle are the same and then one is
10:03
different and then the last one is a
10:05
equilateral triangle which is all three
10:07
sides are the same okay so this is
10:11
basically this type this section this is
10:13
pretty simple stuff so we should just
10:15
munch on it i give you homework now we
10:17
can start working on it right now all
10:18
right a very very easy section not that